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I. INTRODUCTION

Many numerical algorithms, particularly those of quantum many-body theory, rely heav-

ily upon procedures called tensor contractions. Tensor contractions (TCs) are the multi-

dimensional generalization of matrix multiplication (MM). Whereas in MM, one has only a

single internal (contracted) index and the two external indices of the matrix,

Ci
j =

∑
k

Ai
k Bk

j (1)

a tensor contraction may have an arbitary number of both. One simple example from

quantum chemistry is

Ra,b
i,j =

∑
c,d

V a,b
c,d T c,d

i,j . (2)

While Eqn. 2 is isomorphic to MM upon fusion of the three pairs of indices, other similar

contractions with permuted indices are not. An example of a TC that cannot be performed

with MM alone is

Ra,b
i,j =

∑
k,c

Ṽ k,b
c,j T a,c

i,k , (3)

presuming that we are utilizing the straightforward layout of these objects in memory. That

the objects R and T in Eqns. 2 and 3 are the same, the best one can do is to choose a

layout which is optimal for the most expensive TC and use a sub-optimal ordering for the

other. Alternatively, one can change the memory layout sub-optimally-ordered tensors via a

transpose-like operation. A much more complex approach is to use Morton-ordering [1] (also

known as Z-ordering), or more generally, hierarchical tiling [2], to improve the performance

of all tensor contractions, but then it is not possible to use existing implementations of MM,

such as BLAS.

The complexity introduced by the transposition of indices in TCs presents a significant

challenge to programmers. If one hand-codes procedures which are not MM, then a sig-

nificant performance loss is incured, as MM kernels are perhaps the most optimized in all

numerical computation. Alternatively, one can retain the use of fast MM kernels by realign-

ing the memory layout such that operations like Eqn. 3 can be performed with MM.

The transformation of Eqn. 3 to a form which is consistent with matrix multiplication is

as follows:

T a,c
i,k → T1(i, k, a, c) (4)
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Ṽ k,b
c,j → V 1(c, j, k, b) (5)

Ra,b
i,j → R1(i, j, a, b) (6)

T2(i, a, k, c) = T1(i, k, a, c) (7)

V 2((k, b), (c, j)) = V 1((c, j), (k, b)) (8)

V 3(k, c, b, j) = V 2(k, b, c, j) (9)

R2((i, a), (b, j)) = SUM[(k, c)] V 3((k, c), (b, j)) ∗ T2((i, a), (k, c)) (10)

R1(i, j, a, b) = R2(i, a, b, j) (11)

where the matrix dimensions used in the matrix transpose and multiplication calls are de-

noted with parentheses. Row-major ordering (the last index is stride-1) is presumed through-

out.

For a rank-n tensor, there are n! possible permutations of the indices, and writing fast

code for each of these procedures by hand is impractical for n > 4. The automatic generation

of code for these procedures is the subject of this chapter.

II. BACKGROUND

The target application for this project was the coupled-cluster codes within TCE module

of the quantum chemistry package NWChem [3]. Because most of the code within the

TCE module was written by a code generator, it employs a simple structure which is easily

modified. The TCE module also has few, if any, manually optimized procedures and thus

suffers in performance with respect to the best hand-written packages. In the particular

case of tensor (array) permutation, four subroutine calls, tce sortN (N=2,4,6,8), were

used to perform every permutation. Nearly identical sort-acculuate calls (tce sortaccN,

N=2,4,6,8) have use the same code except with “+=” instead of “=”. Replacing these

procedure with faster ones would result in increased performance throughout the code.

Is it not unreasonable to question the utility of optimizing permutations at all. The

permutation of a n-d array is an Nn flop procedure, where N is the rank of each dimension,

whereas the the contraction of two n-d arrays over k indices is an Nn+k flop procedure.

However, the mop cost of both procedures is C · Nn) where C is 2 for permutation (1

read, 1 write) and 3 for contraction (2 reads, 1 write). On modern processors, mops are

so expensive that some have said that flops can almost be ignored. MM achieves a large
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percentage of machine peak by obscuring memory latency through data reuse, which is

possible because flops/mops is large. Since permutations are entirely memory bound, it

is unreasonable to expect a large percentage of peak performance but at the same time,

improper implementation of these procedures can be extraordinarily expensive. Unlike MM,

the flow of data during permutation is necessarily not optimal since at least half of the mops

will not be stride-1.

If we assume flops are free and that performance is determined by the number and type of

mops occuring, then permutation, not MM will be the more expensive procedure of the two.

Since theoretical analyses are rarely quantitative, the relative cost of the two procedures

has been measured using profiling techniques. Both the GNU profiler gprof [4] and TAU [5]

were used to profile the code to ensure correct measurements.

III. RESULTS

All results are for a single water molecular at the equilibrium geometry. Calculations

were performed without point-group symmetry using spherical angular functions. The tile

size for the virtual orbitals (VO) was no greater than 32. For the cc-pVDZ, cc-pVTZ and

cc-pVQZ basis sets, there were 2, 4 and 8 VO tiles with average dimension 19, 26.5 and

27.5, respectively. Using a larger tile size favors dgemm performance, while smaller favors

tce sortN.

A. Profiling of CCSD within NWChem

First it was established empirically that the tensor transpose operation is a significant

portion of the was time, as predicted by the aforementioned theoretical analysis. In Ta-

ble I, the results of profiling are given for computing the CCSD ground-state energy. When

computing the CCSD energy, the coupled-cluster equations (described in previous chapters)

are solved iteratively. The energy evaluation two orders less expensive than the iterative

procedure and does not contribute significantly to the computational cost. The data given

in Table I shows that MM and transpose both contribute significantly to wall time. How-

ever, the fraction of the wall time devoted to MM grows with the basis set, so it is not

entirely clear that the optimality of the transpose will matter for larger systems. It should
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be noted that the MM implementation used was from NETLIB. A high-performance BLAS

library such as GotoBLAS [6] or ATLAS [7] would greatly decrease the time spent on MM

operations.

TABLE I. Profile (gprof) of the NWChem TCE module CCSD code for computing the ground-

state energy.

Matrix multiplication Tensor transpose

dgemm tce sort4 & tce sortacc4

Basis Time (s) % of Total Time (s) % of Total

cc-pVDZ 0.40 27.59 1.49 29.65

cc-pVTZ 8.70 30.87 34.15 37.22

cc-pVQZ 154.46 38.54 108.47 27.07

As should be clear from previous chapters, computating the ground-state energy is but

one of many possible tasks for a coupled-cluster code. In Table II, profiling information is

given for the evaluation of all steps necessary to compute the hyperpolarizability using the

method described in Chapter 8. The number of difficult transposes required for the solution

of the Λ(0), T (1) and Λ(1) equations is significantly larger than required just for T (0), which

is affirmed by the data. The relative amount of time spend in the transpose operations is

approximately 50% greater than that spent in MM for the cc-pVQZ basis set, and while

the overall trend in the basis set is the same as Table I, rate of which MM increases and

transpose decrease is much less.

TABLE II. Profile (gprof) of the NWChem TCE module CCSD code for computing the hyperpo-

larizability.

dgemm tce sort4 & tce sortacc4

Basis Time (s) % of Total Time (s) % of Total

cc-pVDZ 5.78 28.18 11.08 54.03

cc-pVTZ 111.10 28.44 192.45 49.26

cc-pVQZ 1389.05 29.16 2137.17 44.87
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B. Autotuning transpose kernels

It was determined that the primary reason transpose operations are slow is that they

access memory in a less-than-optimal way, that is, strided access rather than sequential

(stride-1) access. While it is not possible to eliminate strided access, it is possible to minimize

the cost of strided access by rearranging the loops such that the stride distance is minimal.

If the stride distance is small enough that cache reuse occurs, a significant performance

increase will result.

While it is possible to determine optimal loop ordering using mathematical analysis, a

much cruder approach — exhaustive sampling — is sufficient in this case. In addition,

sampling includes all possible hardware-specific factors which may not be available for in-

tegration into a performance modeling used in the analytic approach. To determine the

optimal loop-ordering for the 4-d transpose problem, a code-generator was developed which

would produce source code for all possible implementations (24) for each of the 24 trans-

poses, for a total of 576 cases. Source code was generated in both Fortran 77 and ANSI C

since the former is known to be more amenable to compiler optimization, while the latter

allows a more complete set of compiler pragmas and is the language of choice of people who

would further hand-tune these kernels. A master program was instrumented to compile the

source code into binary form using a variety of possible compiler flags to determine the effect

of available optimization options. Some of the optimizations sampled for the Intel compilers

were loop-unrolling, auto-vectorization and auto-parallelization; compiler pragmas were also

explored as a means to explicitly control unrolling and vectorization. The master program

built a self-contained binary for each possible transpose which, when executed, performed

the timing and printed a complete table of results then identified the optimal loop-ordering.

It also prints the compiler flags which were used to generate the code to prevent data rot.

Table III shows the best improvement obtained with the automatically-generated code

as compared to the original implementation within NWChem. Four cases were considered:

regular 4-d arrays of rank 20, 32 and 60 plus an irregular array. The speed-up for the rank

20 case is significantly better than the others because both the input and output array

(1,250 KB each) fit into cache on the machine tested (Intel Core2Duo, 4 MB L3 cache). For

larger dimensions, the arrays do not fit into cache. This clearly indicates that L3 cache-

blocking will significantly improve the performance transpose, although finding the optimal
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code with that additional level of complexity becomes harder. Instead of performing an

exhaustive search over just the space of loop-orderings or compiler options, an exhaustive

search for the cache-blocking case involves exploring the tensor product space of blocking

sizes and loop-orderings for each level of blocking. The dimensionality here is too large

to consider by brute force, and a space-pruning algorithm must be employed to make the

solution achievable in a reasonable amount of time.

In addition to the 4-d case, exhaustive search was used to find the best implementation

of the subset of 6-d transpose-accumulate operations used in CCSD(T). Because of memory

constraints imposed by the use triple-excitation amplitudes, dimensions of the arrays are

much smaller. Due to the smaller stride length, cache-blocking is less important and the

performance improvement realized just by finding the optimal loop-ordering (among 6! = 720

possibilities) is quite good. The performance improvement realized for the first-generation

auto-tuning approach was between 3 and 4 times the original implementation, although

preliminary results for a subsequent attempt were closer to 12 times. This is the subject of

ongoing research.

IV. CONCLUSIONS

Tensor operations, which compose the overwhelming majority of quantum chemistry

codes, require optimal implementations to take advantage of high-performance computers.

It was demonstrated that tensors transpose is a significant contribution to the wall time for

coupled-cluster calculations and that a very simple approach decrease the time devoted to

these operations by a factor of two. The successful approach employed here did not employ

cache-blocking or many other possible optimization techniques which will further improve

the performance

Ultimately, this project demonstrates that the artificial seperation of transpose and MM

in the implementation of tensor contractions is wholly inappropriate. The original moti-

vation for it was to take advantage of vendor-optimized BLAS libraries, but developments

in autotuning over the past 10 years clearly indicate that it is possible to generate tensor

contraction kernels directly. The advantage is not only with respect to performance, but

also in terms of mathematical elegance. The many-body formalism of coupled-cluster theory

is multidimensional and flattening the data structures used in such codes into matrices just
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TABLE III. Best improvement relative to the original implementation by the automatically-

generated ANSI C implementation of the transpose operations for a 4-d array. The Intel 10.1

compiler flags used were -O3 -xT -march=core2 -mtune=core2 -funroll-loops -align.

Transpose 204 324 604 irregular

1234 7.250 2.500 1.946 3.769

1243 7.667 2.345 2.257 2.733

1324 5.000 1.828 1.861 2.667

1342 5.250 2.379 2.173 2.923

1423 7.000 2.448 2.272 2.929

1432 5.250 2.000 2.372 3.154

2134 5.250 2.000 1.967 2.583

2143 8.334 2.586 2.108 2.786

2314 5.250 2.000 2.028 2.583

2341 5.000 2.267 2.179 3.000

2413 7.000 2.571 2.390 2.857

2431 5.000 1.889 2.756 3.385

3124 5.250 1.862 1.966 2.538

3142 5.000 3.233 2.216 3.000

3214 5.250 2.143 2.104 2.833

3241 7.000 1.971 2.219 2.571

3412 5.000 1.838 2.208 2.692

3421 6.334 1.976 2.281 2.429

4123 6.333 2.655 2.228 2.875

4132 4.750 1.944 2.202 3.000

4213 5.250 2.821 2.326 2.786

4231 5.250 2.195 2.299 3.077

4312 4.750 1.973 2.120 3.308

4321 4.500 1.767 2.163 3.077

irregular = 41× 17× 24× 39
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to use BLAS should not be tolerated.
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